Cost-Sensitive Pattern-Based classification for Class Imbalance problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cost-Sensitive Learning and the Class Imbalance Problem

Cost-Sensitive Learning is a type of learning in data mining that takes the misclassification costs (and possibly other types of cost) into consideration. The goal of this type of learning is to minimize the total cost. The key difference between cost-sensitive learning and cost-insensitive learning is that cost-sensitive learning treats the different misclassifications differently. Costinsensi...

متن کامل

The class imbalance problem in pattern classification and learning

It has been observed that class imbalance (that is, significant differences in class prior probabilities) may produce an important deterioration of the performance achieved by existing learning and classification systems. This situation is often found in real-world data describing an infrequent but important case. In the present work, we perform a review of the most important research lines on ...

متن کامل

A Cost Sensitive Technique for Ordinal Classification Problems

A class of problems between classification and regression, learning to predict ordinal classes, has not received much attention so far, even though there are many problems in the real world that fall into that category. Given ordered classes, one is not only interested in maximizing the classification accuracy, but also in minimizing the distances between the actual and the predicted classes. T...

متن کامل

Classification with class imbalance problem: A Review

Most existing classification approaches assume the underlying training set is evenly distributed. In class imbalanced classification, the training set for one class (majority) far surpassed the training set of the other class (minority), in which, the minority class is often the more interesting class. In this paper, we review the issues that come with learning from imbalanced class data sets a...

متن کامل

Cost-sensitive call classification

We present an efficient and effective method which extends the Boosting family of classifiers to allow the weighted classes. Typically classifiers do not treat individual classes separately. For most real world applications, this is not the case, not all classes have the same importance. The accuracy of a particular class can be more critical than others. In this paper we extend the mathematica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2913982